Information Technology Planning Board Meeting

Meeting Summary | Wednesday, November 04, 2015 | 1:00 PM – 3:00 PM | 1215 Murphy Hall

Attendees:
John Mamer (Chair), Kathleen Bawn (Vice Chair), Alex Bui, Apurv Awasthi, Jim Davis, John Riley, Joseph Rudnick, Lisa Kemp Jones, Lisa Snyder, Paul Macey (for Linda Sarna), Renee Tajima-Pena, Robert Trelease, Virginia Steel, Vitaly Oratovsky, Warren Mori

Resources:
Andrew Wissmiller, Bill Labate, Mike Story, Kent Wada; Kelly Arruda (governance coordinator)

1. Welcome and Introduction of New Members | John Mamer

2. Approval of 02-19-2015 Meeting Summary | John Mamer
The summary from the 02-19-2015 meeting was approved.

3. CSG Voting Process Change | Lisa Kemp Jones
[Action: Information]

CSG members voted at their 10-27-2015 meeting to add an additional voting option to their ballot. The prior ballot offered: Yes/No/Abstain, and Comments could be added to any voting option. Now, CSG voting options consist of the existing three options and a fourth option called: Recommend Further Discussion. Comments are still allowed for all options.

This partially arose from the feeling that the group did not have enough time to review the proposal. There was also a sentiment that a vote of “No” would be interpreted as obstructionist. Members also commented on needing clarity on the definition of ‘common good’. Additionally, there were concerns about funding, refresh, and adding to the TIF portfolio, as well as an interest in broadening the scope of the project to address campuswide networking. The accumulated concerns gave rise to the new voting ballot option.

The condensed fall quarter IT governance meeting schedules partially contributed to the tight turnaround. The item was introduced to CSG in late September for ‘Review and Comment”, and it went to CITI shortly thereafter.

4. Research Cyberinfrastructure Upgrade Proposal | Bill Labate, Warren Mori, Andrew Wissmiller, Jim Davis
[Action: Review and Comment]

The Research Cyberinfrastructure (RCI) Upgrade Proposal seeks funding to implement new networking technologies and integrate into the campus Science DMZ1. These upgrades will increase performance, capacity, and redundancy capabilities for existing and forecasted growth.

The current RCI was built as a series of components over the past ten years. It started as an add-on to a departmental network, and has grown 20x in hardware, 15x in users, and 42x in storage

1 The Science DMZ is an area of the network dedicated to the performance, security and advanced capabilities associated with research requirements.
between cloud and compute (most of this growth occurred during the past two years). The current infrastructure has hit its limit in network performance capabilities, and it will reach end of life in April 2016.

This upgrade sets the foundation for future growth. By collaborating with IT Services for network management, the RCI will upgrade to an enterprise-level service, which allows for growth in a controlled, sustainable manner. It has been peer reviewed by the NSF and IDRE Board and reflects the latest Campus CI Plan.

It is imperative to provide these research capabilities in order to remain innovative and competitive. Faculty and researchers expect this infrastructure from a research university. The RCI upgrade will continue to support the research of the current 3,000+ users, as well as allow new, creative avenues of research that may not have been possible before. This will also meet the needs of the Health System transfer, computation, and storage of HIPAA data.

Note that individuals will need to acquire hardware to connect to these big pipes. Without this, research requiring such large capacity is not possible.

In addition to meeting the needs of academic research, separating the research traffic from the rest of the campus will make the campus network more efficient. It will allow for fine-tuning the campus network and strengthening security. Moving forward with the RCI upgrade is exclusive of the broader campus network needs, but it is a compatible step forward.

The total proposal cost is $1.4M. An NSF grant will be covering $500,000, leaving and additional $900K necessary for startup. Note: TIF is one possibility. The TIF rate belongs to Budget and Finance, while the portfolio is managed by ITPB.

Action:
ITPB members are interested in having a little more information and have requested some visuals (charts, graphs, etc.). Bill Labate will get these materials back to the group.

5. Current IT Projects | Andrew Wissmiller

[Action: Information]

1. UCPath: UCOP go-live is currently in progress with cutover activities scheduled throughout November and December 2015. The UCLA, Riverside, and Merced pilot is moving forward.

2. Student Information Systems: Huron Consulting assisted in completing Phase I (Assessment), which included: documenting current processes and listing gaps in the current system, developing draft requirements, and evaluating options for moving forward. A cost/benefit/risk analysis resulted in the recommendation for the evaluation and selection of an ERP solution. Moran Technology consulting will assist in Phase II (System Evaluation & Selection). Funding has been requested through CITI.

3. UC Cyber-Risk Mandate

In July, President Napolitano issued a 5-point plan, which includes,

- Inventory and access cybersecurity vulnerabilities
- Develop a strategy, governance approach, and action plan
- Participate in systemwide cyber-risk reduction efforts
- Participate in regular executive-level discussion of cyber-risk management
• Confirm commitment of adequate staffing and budget to support cybersecurity initiatives
The campus and health sciences are communicating and collaborating much more closely than in the past. Where possible, they will leverage common tools, but this does not mean there will be a one-size-fits-all approach. The campus and health system have separate needs, so solutions with need to be tailored with appropriate controls in place where applicable.
Sorting through this is challenging. UCLA ranks #8 in the world and is one of very few public institutions to achieve this. Rather than being reactive, we are making efforts to achieve and maintain balance between the access necessary to do work and obligations of compliance. Ultimately, we want to make it easy to do the right thing.

6. Common Good | Vitaly Oratovsky
[Action: Discussion]

In the process of reviewing projects in the IT governance pipeline, the topic of common good is often raised. Yet, it proves difficult to find clarifying documentation on the definition.

Common good stems from the IT 20/20 plan. In it, The Four Quadrant Operating Model distinguishes between institutional and local applications/systems and infrastructures. The Institutional side (left side of the model) is where common good sits.

Rather than concrete criteria, the governance process refers to guiding principles that have been developed to assist in determining whether a particular project fall under common good. By default, software and licensed services are decided and funded locally, and the market decides on discretionary software and services. However, institutional funding is considered for:

1. Efficiencies of scale
2. Leveraging network effects
3. Regulatory and policy mandates
4. Avoiding negative externalities
5. Criticality to business or operational needs

Projects are reviewed case by case to determine whether they seem to fit under common good. Common good items generally fall into a gray area, and it is impractical to say that everyone needs to benefits in order for something to qualify as common good. Items that fall into this category may be items that cannot be easily metered, or perhaps there is an inability to enforce property rights. Everyone is mindful of over-taxation and defers to market driven decisions whenever possible.

Action:
1. Consider revisions to the CITI investment request form that includes a specific question(s) about common good principles.
2. Consider reviewing, adding or updating the common good use cases.